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Abstract

This paper presents an overview on the Distributed Prediciontrol (DPC) algorithm first proposed in [15]. First wegent the basic
ideas behind DPC and the main assumptions and then we fociis main properties, extensions, and application examgpéeeloped
and analyzed in subsequent works, e.g., [13,3,11,10&n6],consistently presented in [2].

1 Introduction is non-iterative [25] and requires a neighbor-to-neighbor
communication network), in that each subsystem needs
to know the reference trajectories only of its neighbors.

e Its rationale is similar to the MPC algorithms often em-

ployed in industry: reference trajectories tailored on the

dynamics of the system under control are used.

e Convergence and stability properties are guaranteed under

mild assumptions.

Due to the growing complexity of process plants and to
the increasing number of networks of systems, in the last
decades researchers have been putting huge efforts in the
field of decentralized and distributed control [27,18]. Dis
tributed solutions seem to be very promising with respect to
decentralized schemes, because they allow one to take ad-
vantage of the possibility to transmit information between
the local controllers, see, e.g., [17], and do not requiee th
computational and communication loads of centralized so-
lutions. However, distributed techniques are characteriz
by an intrinsically higher degree of complexity in the de-
sign phase with respect to centralized controllers. Thigcco
represent a great obstacle to their diffusion in the indaistr

world, and motivates the development of many innovative sues, the extensions and the main applications of DPC are

distributed Model Predictive Control (MPC) algorithms for onsistentlv and thorouahly discussed and presented in the
large-scale systems, see the survey papers [25,7] and th%’hDSI'?hesiZ 2] ughly discuss pres :

book [22], where the most recent and popular algorithms In this paper the state feedback Distributed Predictive-Con

have been collected and described. ; . , X
According to the classification proposed in [25], a new non- ol (BPC) algorithm originally proposed in [15] is sketche
and discussed, as well as its properties and extensions. Fi-

iterative, non-cooperative approach based on neighbor-to o e AL .

neighbor communication, called Distributed PredictivesCo  NallYy: SOme significant realistic simulations and a real ex-
trol (DPC), has been proposed in [15], where its convergenceP€rimental test are illustrated, to highlight the applitigb
and stability properties have also been extensively apdlyz of the proposed algorithm.
The highlights of DPC are the following.

For a practical application of DPC, a number of issues con-
cerning its realization and tuning have been tackled in sub-
sequent papers [5,6], where its performances have also been
assessed in realistic simulation scenarios. A number of pa-
pers have also focused on the extension of DPC to output
feedback control [14] and to the problem of tracking con-
stant reference outputs, e.g., [3,11,10]. The realizaon

The paper is organized as follows: in Sections 2 and 3 the

) main control problem is stated and the DPC algorithm is

e Itis not necessary for each subsystem to know the dynam-symmarized, respectively. In Section 4 the main properties
ical models governing the trajectories of the other sub- gnq extensions of DPC are discussed, while in Section 5 we
systems (not even the ones of its neighbors), leading to apresent a number of application examples. Finally, some

non-cooperative approach. , conclusions are drawn in Section 6.
e The transmission of information is limited (i.e., DPC
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scalar) componentg, ..., vs. The symbol& denotes the
Minkowski sum, namel = A@Bifand only ifC={c:c=
a+b, forallac A be B}, while M A =A@ --- @ Ay.
The Pontryagin difference is defined using the symbgdle.
C=AcBifandonlyifC={c:c+beA, forall beB}.
For a discrete-time signal anda,b € N, a < b, we denote
(Sav SaJrlv cee 5Sb) Wlth S[a:b] .

2 Statement of the problem and main assumptions

In this section, the Distributed Predictive Control (DPG) a
gorithm first presented in [15] and further developed in,,e.g

[5,6] is briefly described. Let us assume that the system is

constituted by linear, discrete-time, non-overlapping sub-

systems, dynamically coupled through states and inpuds, an

subject to state and control constraints. For each submyste
A, the dynamics is given by

) M ) ) .
X, = S (A Biut+d (D)

j=1)#i

AiiXE] + BiiUE] +

wherexl! € 2; ¢ #" andull € 2 C #™ are the state
and input vectors of théth subsystem¥; (i =1,...,M),

dil € 2 c %" is an unknown bounded disturbance and the
sets.Zi, % and Z; are convex neighborhoods of the origin.
The subsysteny’j is said to be aeighborof the subsystem
7 if and only if Aj; # 0 and/orB;jj # 0, i.e., if and only if
the statex; and/or inputsu; of .} influence the dynamics
of .%{. The symbol.#{ denotes the set of neighbors .&f
(which excludes). Note that also constraints involving the

be later specified) defined over the prediction horizgn
and calledi(l[('lrv and GL'LV, v =0,...,N—1, respectively.
These trajectories coincide with tressumed trajectories
introduced in [9]. By adding suitable constraints to its MPC
formulation,.¥ is able to guarantee that, for &> 0, its
real trajectories lie in specified time invariant neighbmotis

of £l andil!, i.e.,x e X' & & andul € tl’ & &%, where
0c & and 0c &7 . In this way, the dynamics (1) o#; can

be written as

X1 = A +Biud + 3 (AR B O} W (3)
JEMN
where
(A4 =) +Bi(ul — )} +d e w
JGM

and%:@jem{Aijcfj@Bijcfj%}@@i.

The main idea behind DPC is that each subsystem solves a
robust MPC optimization problem considering that its dy-
namics is given by (3), where the termem(Aijiﬂ(H +
Bijl., ,) can be interpreted as an input known in advance
over the prediction horizow = 0,...,N —1 to be suitably
compensated anwl[('] is a bounded disturbance to be re-

jected. By definition,vvl[(” represents the uncertainty of the
future actions that will be carried out by the dynamic neigh-
bors of subsyster§. Therefore the local MPC optimization
problem to be solved at each time instant by the controller

state of more than one subsystem at the same time can be&mbedded in subsysteB must minimize the cost associ-

accounted for. However, for simplicity of presentatioreyth
are discarded in the present paper. For details see [15,5].

Letting xx = (xl[(l], ... ,XLM]), Uk = (ul[(l], el ul[(M]) anddy =
(dLl],...,dLM]), the overall collective system can be written

as

Xk+1 = AXg + Buy + dy ()
where the matriced andB have block entried\j; andB;;
respectivelyx€ 2 =M, 2i CZ" n=s" nuc% =
M.z c ™ m=sM m,de 2=",% c %", and
2", % are convex by convexity of; and%;, respectively.
The following assumption on decentralized stabilizapikt
needed.

Assumption 1 There exists a block diagonal matrix
K =diag(Ky,.. KM) with Kj e R i=1,...,M such
that: (|) A+BK is Schur, (iF; = (A.. +B..Ki) is Schur,
i=1...,M.

3 Description of the approach

At any time instantk, each subsysten¥; transmits to its
neighbors its future state and input reference trajecdte

ated toS for any possible uncertainty values, i.e., without
having to make any assumption on the strategies adopted by
the other subsystems, provided that their future trajeetor

lie in the specified neighborhood of the reference ones. Such
conservativdutrobustlocal strategies adopted by each sub-
system can be interpreted, from a dynamic non-cooperative
game theoretic perspective, as maxmin strategies, i., th
strategies that maximize “worst case utility” §f(for more
details see, e.g., [26]).

To solve local robust MPC problems (denotedPC prob-
lems), the algorithm proposed in [19] has been selected in
view of the facts that no burdensome minmax optimization
problem is required to be solved on-line, and that it natu-
rally provides the future reference trajectories, as it b
clarified later in this chapter. Similarly to [19], a nhominal
model of subsysteny; is associated to equation (3)

R, = A%y + B0} + S (A% Bt} (@)
jeM
while the control law to be used fa#; is
U = O +KiOg! =) (5)

whereK; must be chosen to satisfy Assumption 1.



Letting ZE] = XE] —f(E}, in view of (3), (4), and (5) one has

ZE]Jrl = FiiZE] +W|[(i] (6)
wherewH € #;. Since’ is bounded ané; is Schur, there
exists a robust positively invariant (RPI) s&f for (6) such

that, for all ZL] € %, then zl[(] 1 € Z. Given Zi define, if
possible, two sets, nelghborhoods of the origit,andA%;,
i=1,...,M suchtha\é& & Z C & andA% &K 2 C &7,
respectively.

3.1 The online phase: the i-DPC optimization problems

At any time instank each subsyster; solves the following
i-DPC problem.

N—-1 . . .
i W= IR e 18k Re) + IRl
X Uik N-1) v=0
_ (7)
subject to (4),
O N (8)
and, forv=0,...,N—1
Ry — Koy € O (9)
Ol[(IL—V - l~“Il[g—v €Au (10)
s, € diC 2o (11)
0, €% C UK Z (12)
and to the terminal constraint
€ 4F (13)

The choice of the positive definite matric€, R®, and

PP in (7) is discussed in [15,6] to guarantee stability and
convergence, While%?i': in (13) is a nominal terminal set
which must be chosen to satisfy the following assumption.

Assumption 2 Letting 2 = M, Zi, # = M, % and
2F =M, ZF, it holds that:

() ZF C 2 is an invariant set foRk1 = (A +BK)%
(i) 0=K& €% foranyke 2°F;
(iii) for all & € 2°F and, for a given constark > 0,
VF (Rie1) = VF () <

—(1"1‘ K)ﬁ()'zk, KX k) (14)

where VF(R) = Zl VAL and

0(%,0) = M, 4%, ally =

) = SN IR
SM (1R 20 + 1107 29).

Attime k, let the palrxl[(‘]k, all be the solution to the

[kk+N—1]K
i-DPC problem and define b)}k‘k the input to the nominal

system (4). Then, according to (5), the input to the subgayste
Q) is

]

uf i

= o+ Ki(x) %) (15)

Denoting bykﬂv‘k

ming from xLﬂk and uh(] KEN— 1K)

to computex[k]m‘k] andleLLN‘k. In DPC, these values in-

crementally define the trajectories of the reference stade a
input variables to be used at the next time instaptl, that
is

] o] sl gl

Rien = Xengeo Uiern = KiXig g (16)
We underline that, in nominal operating conditions, theyonl

information to be transmitted consists in the reference tra
jectories updated as in (16). More specifically, at time step

k, subsystent/{ computesxl[(] N andul[(] n according to (16)
and transmits their values to all the subsystems havings
neighbor, allowing them to update the reference trajeesori

the state trajectory of system (4) stem-

at timek it is also possible

3.2 Offline design and initialization

The design of the DPC algorithm requires that a humber
of tuning parameters are properly selected off-line, tree,
gain matriceX; satisfying Assumption 1, the sef$, 5;7/

A&, A7, and %, and the weighting matrice®?, R?, and

PP, satisfying Assumption 2. In [15,5,6] we have provided
solutions to the mentioned realization and design issues.

On the other hand, the initial reference trajectories age al
critical tuning parameters, since they strongly affect the
initial feasibility. In fact, the initial reference trajaries
must be defined off-line, based on the system initial con-
ditions. Moreover, when disturbances of unexpected entity
occur during the ordinary system operation, alterating the
system’s condition, new suitable state and output referenc
trajectories for all subsystems must be recalculated. ©the
wise, possible serious consequences on the future solution
(e.g., concerning feasibility) of the control problems icbu
occur. The simplest solution consists (consistently whitd t
approach suggested in [8]) in generating such trajectories
using a centralized controller. This has the drawback that
a centralized controller must be designed together with the
distributed ones, and that it must be kept activated whae th
system is running in order to recover the proper functioning
of the process in case of unpredicted external disturbances
Obviously, this need of a centralized “hidden” supervisor
greatly reduces the advantages of utilizing a distributed ¢
trol scheme.

In [6] two different trajectory generation methods are pre-
sented. They can be applied both for offline reference tra-
jectory generation (i.e., performed at tirke= 0) and for
extra-ordinary reset operations, requiring number ofaiter
tive information exchanges between neighbors.



4 Properties of DPC feasibility of thei-DPC problems holds at time stép= 0.

In this section the main theoretical properties of DPC will

be discussed, together with some extensions. In order toOutput feedback The DPC approach, described for coping

enhance readability and clarity, the theoretical details w  with unknown exogenous additive disturbances, has been

be omitted. The interested reader can rely on [15,14,3] for employed in [14] for designing a DPC algorithm for output

a more rigorous treatment of the discussed topics. feedback control. Specifically, assume that the input and
output equations of the system are the following

Control of continuous-time systems and discretization ofi

I a0 gl oM ol gyl

Xpyp = Aji X Biiu iz AX Biju
System (2) can be seen as the state-space representation of '[‘]*1 ! O'E] Biithe + Zjma A+ Bijlc)

a discrete-time empirical model obtained from data through Y, = CiX

identification procedures, for instance by means of impulse a7

or step response experiments, or it can be computed as thevhere the state which is not directly available is here dethot
the linearization and discretization of a continuous-time asx°lil. Denote byx; the estimate ofll foralli=1,...,M,
first principle model. In the latter case, the discretizatio provided by a decentralized Luenberger-like observeref th
procedure must guarantee to maintain the sparsity of thetype

original continuous-time model, i.e., the mutual influence
among the subsystems. In fact, the sparse structure of the _ji [ [ M i i
model clearly represents physical conn%ctions (such as mas XL]H - A"X'[‘] +Bi UL] * 3104 (A X Bij Ui
or energy flows) between the subsystems. —L; (yl[('] — Cixl[('])

Unfortunately, the sparsity pattern of the system is lost

when the exact ZOH (Zero-Order-Hold), Backward Euler, Assume that the decentralized observer is convergent
or bilinear transformations are used, while it is preserved je A + LC is Schur, whereC =diag(Cy,...,Cy) and

by the Forward Euler (FE) transformation. However, it is | —diag(L1,...,Ln). Under this assumption it is possible

well known that with FE some important properties of the to guarantee that the estimation error for each subsystem
underlying continuous time system can be lost; for example i

; Cas Ol Gl s P i
stability is maintained only for very small sampling times, {,Svaboffg)eg;(;&'f(k cor?(é(seoild?rwailtlLl tﬁelwér’ttﬂrb:ar::ltglsstem
which can be inadvisable in many digital control applica- y xacty P P y

tions. (Q), wheredl[('] = —Li(yl[('] — Cixl[(']) is regarded as a bounded

In distributed and decentralized control techniques based disturbance, i.e.dL'] € % = —L;C;=;. From this point on,
MPC, where discrete-time models are mainly utilized, the the output feedback control problem is solved as a robust
loss of sparsity can easily result in an increase of the con-state feedback problem applied to the system (1). Details
troller complexity. For these reasons, in order to improve on this approach can be found in [14], where a condition
the performance of FE and to maintain sparsity, a new dis- and a constructive method are derived to compute the sets
cretization method called Mixed Euler ZOH (mE-ZOH) has 3 in such a way thak = []M, 5; is an invariant set for the
been proposed and analyzed in [12]. interconnected observer error.

(18)

Optimality issues and convergenceGlobal optimality of  Tracking. To extend the DPC method for tracking desired
the interconnected closed loop system cannot be guarantee@ytput signals, the main problem is to characterize the stat
using DPC. This is due to the inherent conservativeness ofand input trajectories, for all subsystems, which correspo
robust algorithms and can be understood in the light of the {5 the desired output trajectories. To clarify this, coesithe
game-theoretic interpretation of DPC. Namely, the prostide case where the desired output trajectories are constant and
solution to the control problem can be cast as a maxmin gq 4 tgyfil, for alli = 1,..., M. Under standard assumptions
solution of a dynamic non-cooperative game (see, €.9.,on the system matrice@, B, C) (i.e., that the input/output

|[26])| wher?\ all the invr?_lvr?d suté_sfyr/stemsf aim to %ptirr;]ize_ collective system obtained from (17) has no invariant zeros
ocal cost functions which are diiferent from each other: j, 1 gee [3] for details), the desired setpoint values fer th

therefore, different and possibly conflicting goals inalaly collective statex® and inputu can be computed as follows
However, differently from suboptimal distributed MPC 1

algorithms discussed in [24], whose solutions can be re- [)70 A—I B] [0] (19)
which possibly lead to instability of the closed-loop syste u c o y
the convergence of the DPC algorithm can be guaranteed.

algorithm is carried out, showing that such fundamental andul’ for x[! andulll, respectively, are obtained as the vec-
property is guaranteed provided that the tuning parameterstor components ok® andu of suitable dimensions.

imply suboptimality.

garded as Nash solutions of non-cooperative games and

Specifically, in [15] a convergence analysis of the DPC Wherey = (y1¥...y1). In this way, the setpoint valued'

and the required sets can be chosen as specified and that thidowever, the solution to (19) requires either a centralized



computation or an iterative procedure (to be carried out
within a sampling interval). These solutions are not com-
patible with the proposed approach. Two different solwgion
have been proposed to circumvent this problem: (i) the use
of the so-calledrelocity form see [3]; (ii) the introduction

of a multi-layer control architecture, see [11,10].

i) The use of the velocity form (as discussed in [3]) im-
plies a transformation of (17) into an equivalent sys-
tem, whose state variable is the padx!, gll) and

whose input variable isull, wheredx)’ = x{! —x{! |

g =yl — 1, andul’ = ul! — ull | In this way, the
tracking problem for (17) is cast as a more standard reg-
ulation problem for the velocity form without having to
explicitly computex!!! andull. Therefore, the DPC al-
gorithm can be applied without significant restrictions

are: scalability of the online implementation, limited
transmission and computational load (also in view of
the facts that the reference generator layer is indepen-
dent of the robust MPC layer, and hence computations
can be performed in a parallelized fashion, and that
information is required to be transmitted only among
neighboring subsystems), and simplicity of implemen-
tation.

5 Applications of DPC

The DPC algorithm has been tested in a number of different
test cases, see e.g.,[15,5,6,10]. In this section we ficst sh
some results of application of DPC to three realistic simu-
lation examples (see Sections 5.1-5.3), previously shown i
[6] and related to popular case studies in the context of dis-

and has also the advantage of guaranteeing offset-freeributed control. Also, we apply the multi-layer DPC scheme

tracking in presence of constant perturbations.

The main issue in this solution consists of the analysis
on how constraints orll and onul! translate into con-
straints ondxlil, glil, anddulll, especially as far as the
terminal constraints are concerned.

i) An alternative solution is discussed in [11,10], where
a hierarchical control architecture is proposed, see Fig-
ure 1: areference output trajectory layeromputes in
a distributed way the output reference trajectofiéls
given the “ideal” set-pointgl!, while areference state
and input trajectory layedetermines the corresponding
state and control trajectoriéd) and{ll. At the lower
layer of the structure of Figure 1, a distributexbust
MPC layeris designed to drive the real state and in-

put trajectoriesq[(i] and uE] of the subsystems as close

as possible t&l[('], Gl[('], while satisfying the constraints.
Concerning theeference output trajectory layeit is
important to remark that, in the considered distributed
context, too rapid changes of the output reference tra-

jectory of a given subsystem could greatly affect the

performance and the behavior of the other subsystems.

Therefore, the rate of variation g”fﬁ] is limited, which
may limit the reactivity of the proposed control scheme
to rapid changes in the output setpoints.

The main advantages of the scheme proposed in [10
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Fig. 1. Distributed architecture for tracking referencgnsils.

for tracking to a real test bed, i.e., the control of a smaditfle
of unicycle robots (see Section 5.4), previously illustcht
in [10].

5.1 Temperature control

We aim at regulating the temperaturég Tg, Tc and Tp

of the four rooms of the building represented in Figure 2
(see [11,4]). The first apartment is constituted by rodns
andB, while the second one by roorftsandD. Each room

is equipped with a radiator supplying heajs gg, qc and
Op- The heat transfer coefficient between roofnsC and

B - D is K| =1 W/nPK, the one between roomé - B
andC - D is K, = 2.5 W/m?K, and the one between each

room and the external environmeni{s= 0.5 W/nPK. The
nominal external temperatureTs = 0°C and, for the sake
of simplicity, solar radiation is not considered. The vokim
of each room i = 48 ¥, and the wall surfaces between the
rooms are all equal t§ = 12 n?, while those of the external
walls are equal tse = 24 . Air density and heat capacity
are p = 1.225 Kg/n? and ¢ = 1005 J/KgK, respectively.
Letting ¢ = pcV, the dynamic model is the following:

9% = 5Ky (Te — Ta) + 5K (To — Ta) + SKe(Te — Ta) +a
(PddltB =5K(Ta—Te) + Sk (To — Ta) + SeK(Te — Te) + O
@9 — Sk (Ta—Te) + sk (To — Te) + sekb(Te — Te) + e
‘pddltD =5k (Te—To) + 5K (Tc — To) + sek&(Te — To) + b

The considered equilibrium pointiga =g =qc =0p =
q= TSgk%, with Ta =Tg = Tc = Tp = T = 20°C. Let
OTa=Ta—T,0Te=Tg-T,8Tc=Tc-T,0To=Tp T,
0Te = Te — Te, 60a = (da—Q)/cpV, 80g = (s — ) /CpV,
3gc = (gc — g)/cpV and dgp = (gp — g)/cpV. In
this way, denoting oy = ski/cpV, 0 = sk,/cpV,
O3 = sekte/ch, 0=01+02+03,X= (5TA, O0Tg,0Tc, 5TD),
U = (60a, 008, 50c,qp) and d = [T T O Tg) T 8T the
previous model is rewritten in state space representation



4m 4 m The results of the simulations, performed using the

€------—----- > €----—------- >
— — continuous-time process model, are shown in Figure 3,
A while the values of the input variables are depicted in Fig-
! A B ure 4. In both these figures a comparison between DPC and
am a centralized MPC (cMPC), with the same state and con-
! / trol weighting matrices is provided, showing only a small
' : —r reduction of performances.
¢ 0. 0.
A
: C D
4m : |: / 9—1.5
; - gl
Fig. 2. Schematic representation of a building with two &pants. B W T ™
X(t) = AcX(t) + Bcu(t) +d(t), where Fig. 3. State trajectories with DPC (black lines) and cMP&yg
Iine_s) _oféTA (left, solid Iines),6TB_ (left, dashed linesyTc (right,
00 o O 1000 solid lines),dTp (right, dashed lines).
oo -0 0 o 0100
Ac= ) Bc=
opr 0 -0 oo 0010
0 oo oo -0 0001

The discrete-time system of the form (2) (with= 4 andm=
4) is obtained by mE-ZOH discretization [12] with sampling
time h=10. The partition of inputs and states is:

o 100 200 300 400 500 - 0 100 200 300 400 500
Time (s) Time (s)

T T
(1 — 1] —
X = 10Ty O0Tg| , U™ = {dqga O
{ A B} [ Ga qB} Fig. 4. Input trajectories with DPC (black lines) and cMPCafg

lines) of dga (left, solid lines),doqg (left, dashed linesyqc (right,

¥ = [51_0 6TD} , U2 — [6% 6qD] solid lines),dqp (right, dashed lines).

The constraints on the inputs and the states of the linehrize
been considered

system have been chosen as:
|:5 5} M Tend . .
ISRE— Z/ X Tx(t) it (20)

S ] M Nend .

Z Z xk Q.xk +uk R.uk (21)

To quantitatively assess the performance deterioration of
DPC with respect to cMPC, the following two indices have

[ 5 S}T Xmax

mln
mln

[ 5 S}T Xz

Umin = { 0.038 0. 038}1- Umax— {0 030 0030}

2 2 T w_hereTenq is the final time a_ncNend_ls the totql number of
Unin = { 0.038 —0. 038} Umax = {0.030 0030} discrete-time steps of the simulation experiment. The val-
ues ofISREandJ corresponding to the state transients of
Figure 3 and Figure 4 with DPC and cMPC are reported in
Table 5.1.

For implementation details, see [6]n the simula-
tions reported below, the perturbed initial conditions
for 8Ta = —3.2°C, dTg = —2.58°C, d0Tc = —1.12°C,

0Tp = 3.55°C have been set, the real external temperature
has been assumed to randomly vary betwed®°C and 5.2 Four-tanks system

10°C and a sudden decrease of temperafiydias been

forced att = 350s, representing for instance the opening A benchmark case often used to assess the effectiveness
of a door, to show the capability of DPC to recover the of distributed control algorithms is the four-tanks system
reference trajectories. schematically drawn in Figure 5, originally described i6][1



cMPC 461.4

ISRE DPC 501.1
DPC/cMPC| 1.09

cMPC 120.2

J DPC 127.8
DPC/cMPC| 1.06

Table 1
ISREandJ with DPC and cMPC in the temperature control prob-
lem.

Tank 4

qu%_*

Tank 1

Pump 2

Fig. 5. Schematic representation of a four-tanks system.

and then utilized, for instance, in [1,20,3]. The goal is to
regulate the levelby, hy, hg andh, of the four tanks. The
manipulated inputs are the voltages of the two pumps

andv,. We assume to have a bounded unknown disturbance ° o

w= (wy,Ws) on the applied voltages, such that the real input
to the plant is(vy +wi, Vo +Ws). Let the parameteng and

y2 € (0,1) represent the fraction of water that flows inside
the lower tanks, and are kept fixed during the simulations.
Then, the dynamics of the system is given by

T = —2Lv/2gh + 8 v/2gh + v

e = — % /2gh + My 2
G = —22/2ghe + 2V2gMe + B2v,

dhy

1
|

r = —%\/ZQ—M—F—“_AVj)szz

where Ay and g are the cross-section of Tankand the
cross section of the outlet hole of Tankrespectively. The
coefficientsk; andky represent the conversion parameters
from the voltage applied to the pump to the flux of water.
The values of the parameters, taken from [16], #&g=

A4 =28 cn?, Ay = Az = 32 cn?, a; = a4 = 0.071 cn?,

a; =ag=0.057 cnt, ky = 3.35 cn?/Vs ko = 3.33 cn? Vs

y1 = 0.7, = 0.6. The considered equilibrium pointig =

V2 =3V, h; =12263 cm,h, = 1.409 cm,hz = 12.783 cm
and hy = 1.634 cm. Denotingdhy =h —h, | =1,2,3,4
and dvi = v — Vi, i = 1,2, x = (0hy, dhy, 8h3, dhy), u =
(dv1,0V2), d = B(wy,Ws), linearizing system (22) around

the considered equilibrium point and discretizing it using
ME-ZOH [12] with sampling timé = 1 s, we obtain a linear
system of the type (2), where

098 0 0 Q04 0.08 0

A 0 097 0 O _ 003 O
0 003099 O 0 006
0O O 0 0% 0 005

The inputs and states are partitioned as:

:
Xl — [(Shl 5h2} L ulll = 5wy

T
X[Z] = [5h3 5h4} s U[Z] = 5V2

The constraints on the inputs and the states of the linehrize
system have been chosen as:

T T

Xin = | ~12.263 ~1.409] , Xinex= [40 40+ Xy
2] T 2] T 2]
Xon= | ~12783 -1.634 , xitex= [40 40 +x33,

2l

L _ 2 2 _

Unnin = Umin = 3; UE%LXZ 3
The disturbancew; » on the applied voltages are assumed

to randomly vary between0.01 V and 001 V. For imple-
mentation details see [6]Starting from initial conditions

e

RN

150 ) 50 100
Time ()

0 50 100
Time (s)

150

Fig. 6. Trajectories of the state&! (left) andx? (right) obtained
with DPC (black lines) and with cMPC (gray lines) for the feur
tanks system. Solid linegth; anddhgs; dashed linesdhy anddhy.

oh; = 0.274 cm, dh, = 0.067 cm, dhz = 0.203 cm, and
ohs = 0.254 cm. The simulation results, obtained using the
continuous-time nonlinear model, are reported in Figure 6,
while in Figure 7 the applied real voltages are shown. In ad-
dition to the external disturbandev;,w,), included in the
robust controller design, at time= 100 s an unpredicted
impulse equal to 2 V has been applied to the first pump. The
reference trajectories were then re-generated online-to re
cover the nominal operating conditions. The performances
are close to the ones obtained with centralized MPC, as also
witnessed by the values taken by the indi¢t8RE and J
defined in (20), (21) and reported in Table 5.2.



100 150

0 100 0
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Fig. 7. Inputsdv; (left) anddv, (right) obtained with DPC (black
lines) and with cMPC (gray lines) for the four-tanks system.

cMPC 74.2

ISRE DPC 82.3
DPC/cMPC| 1.11

cMPC 1.36

J DPC 1.47
DPC/cMPC | 1.08

Table 2
ISREand J with DPC and cMPC in the in the four-tanks system
problem.

5.3 Cascade coupled flotation tanks

The third example deals with the level control problem of
flotation tanks proposed in [28]. The system is constituted b
five tanks connected in cascade with control valves between
the tanks (Figure 8). A flow of pulp enters the first tank.
The goal is to keep stable the levelsi =1,...,5, in all

the tanks. The manipulated inputs are the commands to the

valvesvi, i = 1,...,5. The mathematical model describing
q_> ‘yl vl
DOl |72 |
h_l_i _______ jy3 v3
2y ‘)’4 v
3t ‘3‘5
h4d

Fig. 8. Schematic representation of the flotation tanks.

the dynamics of the levels inside the five tanks is [28]:

2 = q—kyviv/y1— Y2+ g

mz% = kivivyr — Y2+ —kova/yo —ys+ o
2D = kovo\/y2 —y3 + o —kava /Y3 —ya+ hg  (23)
2B = kevay/¥s—vat Ps— Kavav/¥a Y5 +

295 — Kyva\/Ya — Y5+ s — ksVsy/Y5 + P

wherer is radius of the tanks;, i =1,...,5 are the valves

coefficients andy, i = 1,...,5 are the physical height dif-
ferences between subsequent tanks. We set m, k; = 0.1
m?°/Vs,i=1,...,5andhj =05m,i =1,...,5. The nomi-
nal value for the inlet flow igj= 0.1 m*/s and we assume it
is affected by an uncertainty = +0.5% randomly varying
with the time. We considered the equilibrium point where
yi=2m,i=1,...,5, and, correspondingly; = 1.4142 V,
i=1,...,4andvs =0.6325 V. Letdy, =y, Vi, i=1,...,5,

oV =V, *\Ti: i= 1; oo 751 X= (6y1a 5y27 6y3; 5y47 6y5)! u=
(dvy, OVo, OV3, OVs, OVs5) andd = Byw. The linearization of
system (23) in correspondence of the considered equifibriu
point and its discretization with mE-ZOH using a sampling
time 5 s, leads to a linear system of the form (2) , where
By =[14714000 (' and

0
0

[0.853 Q147 0 0
0.136 Q727 Q136 O

A=| 0 013607270136 0 |,
0 0 01360727 0136
| 0 0 0 0157 0969
[—0.104 © 0 0 0 |
0.096 —0.096 O 0 0
B=| 0 009 —0096 0 0
0 0 0096 —0.096 O
0 0 0 Q111 —0.248|

The partitions of inputs and states, foe 1,...,5 is:

X =y, ulll = dvy

The constraints on the inputs and the states of the linehrize
system, fori =1,...,5, have been set as:

(i

min —

fi

m

i _

min —

X _17X ax:17 u _\7i7 UMax::S_\Tl
For implementation details, please see [6].

The initial levels of the tanks have been assumed to be
different from the required values, thatdy; = —23.3 cm,
dyo = —21.6 cm,dy3 = 23.3 cm,dys = 44.4 cm, anddys =
—12.9 cm and at timé = 300s a disturbance of magnitude
w= 0.1 m¥/s has been applied to the plant. In Figure 9 we
show the transients, obtained using the continuous-time no
linear model, of the state and input of the first tank, disectl
affected by the external flog. Figure 10 and Figure 11 re-
port, respectively, the states and the inputs of the remguini
four tanks. Note that, also in this case, the distributedrobn
system reacts to the disturbance by generating from scratch
the reference trajectories. Moreover, only minor diffexes
arise between the centralized and the distributed solsition
as again shown by the indices (20), (21) reported in Table

5.3.



1 o cMPC 10.7
1: 00y ISRE DPC 12.2
, 0 DPC/cMPC| 1.14
:E 5 Ef.o.oz cMPC 6.6
19 o J DPC 6.7
DPC/cMPC | 1.01
| I U S S Wy ES S S VR Table 3
Time (s) Time (s) ISREand J with DPC and cMPC in the flotation tanks control
problem.

Fig. 9. Trajectories of the stax®¥ (left) and of the inputi¥! (right)
obtained with DPC (black lines) and with cMPC (gray lines) fo  where (x,y) is the cartesian position of the robap, is

the control of the floating tanks. its orientation angle, and s its linear velocity. The linear
acceleratiora and the angular velocity are inputs.

10 By resorting to a feedback linearization procedure (sep [23
-0 27 a linear model of the robots can be used to describe the
2 10 S0 : f system’s dynamics. Namely, defing =X, n2 =X, N3 =Y,

" @] ®) n4 =Yy, and the dynamics resulting from (24) is
10 .
w0 ~ # ni=nz (25a)
fza :E 0 N2 = acosy — Vwsing (25b)
) ©] " @ N3 =1Na (25¢)
0 - .
0 200 4o 60 600 0 w00 4o 600 800 Na = asing+ vwCcosy (25d)

Fig. 10. Trajectories of the state® (a), X% (b), X% (c) andx® Now define two new “fictitious® input variables, =

(d) obtained with DPC (black lines) and with cMPC (gray lipes 2059~ V@SIng anday = asing -+ vwcosy. From (25) the

for the control of the floating tanks model (24) is transformed in a set of two decoupled double
' integrators with inputgy anday.

To recover the real input3v, a) from (ay,ay) compute

0.05 0.04
0 . 0.02
5 ;7 s o , [w} 1 [ sing cosqo] [axl (26)
> -0.05 = = —
-0.02 - .
o @) () a V' |vcosp vsing| |ay
0.1 0.1
< 005 s °‘°SN Note that, for obtaining (26), it is assumed thgt 0. This
= Ok g ° singularity point must be accounted for when designing con-
ol °® @ trol laws on the equivalent linear model [23].
005 200 a0 60 80 o 200 400 600 800 In discrete-time, from (25) and with sampling time=5 s,
Time (s) Time (s) we Obta'n
Fig. 11. Inputsu@ (a), u® (b), u“ (c) andu® (d) obtained with 2
DPC (black lines) and with cMPC (gray lines) for the contrbl o 1700 2 0
the floating tanks. 0100 I 0
Ai =A= ,Bi =B= 2
5.4 Control of unicycle robots 001r 0%
0001 0

In this section the proposed algorithm is applied to the prob
lem of positioning a number of mobile robots in specified The measured variables at@ndy, i.e., n1 andns in (25).

positions, while guaranteeing collision avoidance. Note that this case study is characterized by (i) no dy-
The dynamics of a single robot is described by a modified namically coupling terms, i.eAj =0 andBj; = 0 for all
version of the first-order kinematic model [23]: i,j=1,...,M with j #1i; (i) static coupling constraints on
the position variables guaranteeing collision avoidance.
X = VCOSQ (24a)
y=vsing (24b) The experimental set-up consists of three e-puck mobile
— w (24c) robots [21]. To simplify the application of the algorithrhget
(/?— control law is designed on a portable computer communi-
v=a (24d) cating with the e-puck robots through wireless connection.



The measurement system consists of a camera, installed or
the top of the 13& 80 cn? working area. Position and ori-

Conclusions

entation of each robot are detected using two colored sircle | this paper we have presented the main ideas behind the

placed on the top of each agent, see Figure 12.

Distributed Predictive Control (DPC) algorithm first pro-

posed in [15]. In the paper we have also illustrated the main
- properties, extensions, and applications of DPC, subject o
L subsequent works.

WEBCAM

(1]
Fig. 12. Sketch of the experimental set-up.

Collision avoidance constraints are in principle non-eav
and described using nonlinear inequalities. To circumvent
this problem, suitable linear constraints are defined to re-
place non-convex ones and are obtained by tracing a linel3]
stemming from the center of each robot and corresponding
to a tangent line to the circumference of the neighboring
ones. (4]

(2]

In the reported real experiment the three robots are ilyitial 5
placed (at timet = 1) at positions(28,52), (39,16), and
(90,39) - all coordinates are in cm. Figure 13 shows the
evolution of their motion in reaching the goal positions -

i.e., (86,13), (77,55), and(20,39) - at timet = 45 s while 6]
fulfilling collision avoidance constraints.
80 t=1s 80 t=20's [7]
-g 60 \D) ° g 60
> 40 A 2y 740
~7/
(8]
20 :O) - 20
00 50 100 O0 50 100
x [em] x [cm] [9]
80 t=25s 80 t=45s
— 60 — 60
g g
> 40 >0
20 20
0 0
0 50 100 0 50 100

x [cm]

Fig. 13. Plots of the robot trajectories. Robot[1; robot 2: O);
robot 3: A. Symbols with white surface denote the position of the
robots, while symbols with black surface denote the goaitipos.
Large circles with grey dashed line denote the area occupjed
the robots.
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