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Abstract

This paper presents an overview on the Distributed Predictive Control (DPC) algorithm first proposed in [15]. First we present the basic
ideas behind DPC and the main assumptions and then we focus onits main properties, extensions, and application examplesdeveloped
and analyzed in subsequent works, e.g., [13,3,11,10,5,6],and consistently presented in [2].

1 Introduction

Due to the growing complexity of process plants and to
the increasing number of networks of systems, in the last
decades researchers have been putting huge efforts in the
field of decentralized and distributed control [27,18]. Dis-
tributed solutions seem to be very promising with respect to
decentralized schemes, because they allow one to take ad-
vantage of the possibility to transmit information between
the local controllers, see, e.g., [17], and do not require the
computational and communication loads of centralized so-
lutions. However, distributed techniques are characterized
by an intrinsically higher degree of complexity in the de-
sign phase with respect to centralized controllers. This could
represent a great obstacle to their diffusion in the industrial
world, and motivates the development of many innovative
distributed Model Predictive Control (MPC) algorithms for
large-scale systems, see the survey papers [25,7] and the
book [22], where the most recent and popular algorithms
have been collected and described.
According to the classification proposed in [25], a new non-
iterative, non-cooperative approach based on neighbor-to-
neighbor communication, called Distributed Predictive Con-
trol (DPC), has been proposed in [15], where its convergence
and stability properties have also been extensively analyzed.
The highlights of DPC are the following.

• It is not necessary for each subsystem to know the dynam-
ical models governing the trajectories of the other sub-
systems (not even the ones of its neighbors), leading to a
non-cooperative approach.

• The transmission of information is limited (i.e., DPC
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is non-iterative [25] and requires a neighbor-to-neighbor
communication network), in that each subsystem needs
to know the reference trajectories only of its neighbors.

• Its rationale is similar to the MPC algorithms often em-
ployed in industry: reference trajectories tailored on the
dynamics of the system under control are used.

• Convergence and stability properties are guaranteed under
mild assumptions.

For a practical application of DPC, a number of issues con-
cerning its realization and tuning have been tackled in sub-
sequent papers [5,6], where its performances have also been
assessed in realistic simulation scenarios. A number of pa-
pers have also focused on the extension of DPC to output
feedback control [14] and to the problem of tracking con-
stant reference outputs, e.g., [3,11,10]. The realizationis-
sues, the extensions and the main applications of DPC are
consistently and thoroughly discussed and presented in the
PhD Thesis [2].
In this paper the state feedback Distributed Predictive Con-
trol (DPC) algorithm originally proposed in [15] is sketched
and discussed, as well as its properties and extensions. Fi-
nally, some significant realistic simulations and a real ex-
perimental test are illustrated, to highlight the applicability
of the proposed algorithm.

The paper is organized as follows: in Sections 2 and 3 the
main control problem is stated and the DPC algorithm is
summarized, respectively. In Section 4 the main properties
and extensions of DPC are discussed, while in Section 5 we
present a number of application examples. Finally, some
conclusions are drawn in Section 6.

Notation. A matrix is Schur stable if all its eigenvalues
lie in the interior of the unit circle. The short-handv =
(v1, . . . ,vs) denotes a column vector withs (not necessarily



scalar) componentsv1, . . . , vs. The symbol⊕ denotes the
Minkowski sum, namelyC=A⊕B if and only ifC= {c : c=
a+b, for all a∈ A,b∈ B}, while

⊕M
i=1Ai = A1⊕·· ·⊕AM.

The Pontryagin difference is defined using the symbol⊖, i.e.
C= A⊖B if and only if C= {c : c+b∈ A, for all b∈ B}.
For a discrete-time signalst anda,b∈N, a≤ b, we denote
(sa,sa+1, . . . ,sb) with s[a:b].

2 Statement of the problem and main assumptions

In this section, the Distributed Predictive Control (DPC) al-
gorithm first presented in [15] and further developed in, e.g.,
[5,6] is briefly described. Let us assume that the system is
constituted byM linear, discrete-time, non-overlapping sub-
systems, dynamically coupled through states and inputs, and
subject to state and control constraints. For each subsystem
Si , the dynamics is given by

x[i]k+1 = A ii x
[i]
k +Biiu

[i]
k +

M

∑
j=1, j 6=i

{A i j x
j
k+Bi j u

j
k}+d[i]

k (1)

where x[i] ∈ Xi ⊆ Rni and u[i] ∈ Ui ⊆ Rmi are the state
and input vectors of thei-th subsystemSi (i = 1, ...,M),
d[i] ∈Di ⊂ Rni is an unknown bounded disturbance and the
setsXi , Ui andDi are convex neighborhoods of the origin.
The subsystemS j is said to be aneighborof the subsystem
Si if and only if A i j 6= 0 and/orBi j 6= 0, i.e., if and only if
the statesx j and/or inputsu j of S j influence the dynamics
of Si . The symbolNi denotes the set of neighbors ofSi
(which excludesi). Note that also constraints involving the
state of more than one subsystem at the same time can be
accounted for. However, for simplicity of presentation, they
are discarded in the present paper. For details see [15,5].

Letting xk = (x[1]k , . . . ,x[M]
k ), uk = (u[1]

k , . . . ,u[M]
k ) and dk =

(d[1]
k , . . . ,d[M]

k ), the overall collective system can be written
as

xk+1 = Axk+Buk+dk (2)

where the matricesA andB have block entriesA i j andBi j

respectively,x ∈X = ∏M
i=1Xi ⊆Rn, n= ∑M

i=1ni, u∈U =

∏M
i=1Ui ⊆ Rm, m= ∑M

i=1mi , d ∈ D = ∏M
i=1Di ⊂ Rn, and

X , U are convex by convexity ofXi andUi , respectively.
The following assumption on decentralized stabilizability is
needed.

Assumption 1 There exists a block diagonal matrix
K =diag(K1, . . . ,KM), with K i ∈ Rmi×ni , i = 1, . . . ,M such
that: (i) A +BK is Schur, (ii)Fii = (A ii +Bii K i) is Schur,
i = 1, . . . ,M.

3 Description of the approach

At any time instantk, each subsystemSi transmits to its
neighbors its future state and input reference trajectories (to

be later specified) defined over the prediction horizonN,

and calledx̃[i]k+ν and ũ[i]
k+ν , ν = 0, . . . ,N− 1, respectively.

These trajectories coincide with theassumed trajectories
introduced in [9]. By adding suitable constraints to its MPC
formulation,Si is able to guarantee that, for allk ≥ 0, its
real trajectories lie in specified time invariant neighborhoods

of x̃[i] andũ[i], i.e.,x[i]k ∈ x̃[i]k ⊕Ei andu[i]
k ∈ ũ[i]

k ⊕E U
i , where

0∈ Ei and 0∈ E U
i . In this way, the dynamics (1) ofSi can

be written as

x[i]k+1 = A ii x
[i]
k +Biiu

[i]
k + ∑

j∈Ni

{A i j x̃
j
k+Bi j ũ

j
k}+w[i]

k (3)

where

w[i]
k = ∑

j∈Ni

{A i j (x
j
k− x̃ j

k)+Bi j (u
j
k− ũ j

k)}+d[i]
k ∈ Wi

andWi =
⊕

j∈Ni
{A i j E j ⊕Bi j E

U
j }⊕Di.

The main idea behind DPC is that each subsystem solves a
robust MPC optimization problem considering that its dy-
namics is given by (3), where the term∑ j∈Ni

(A i j x̃
j
k+ν +

Bi j ũ
j
k+ν ) can be interpreted as an input known in advance

over the prediction horizonν = 0, . . . ,N−1 to be suitably

compensated andw[i]
k is a bounded disturbance to be re-

jected. By definition,w[i]
k represents the uncertainty of the

future actions that will be carried out by the dynamic neigh-
bors of subsystemSi . Therefore the local MPC optimization
problem to be solved at each time instant by the controller
embedded in subsystemSi must minimize the cost associ-
ated toSi for any possible uncertainty values, i.e., without
having to make any assumption on the strategies adopted by
the other subsystems, provided that their future trajectories
lie in the specified neighborhood of the reference ones. Such
conservativebut robustlocal strategies adopted by each sub-
system can be interpreted, from a dynamic non-cooperative
game theoretic perspective, as maxmin strategies, i.e., the
strategies that maximize “worst case utility” ofSi (for more
details see, e.g., [26]).
To solve local robust MPC problems (denotedi-DPC prob-
lems), the algorithm proposed in [19] has been selected in
view of the facts that no burdensome minmax optimization
problem is required to be solved on-line, and that it natu-
rally provides the future reference trajectories, as it will be
clarified later in this chapter. Similarly to [19], a nominal
model of subsystemSi is associated to equation (3)

x̂[i]k+1 = A ii x̂
[i]
k +Bii û

[i]
k + ∑

j∈Ni

{A i j x̃
j
k+Bi j ũ

j
k} (4)

while the control law to be used forSi is

u[i]
k = û[i]

k +K i(x
[i]
k − x̂[i]k ) (5)

whereK i must be chosen to satisfy Assumption 1.
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Letting z[i]k = x[i]k − x̂[i]k , in view of (3), (4), and (5) one has

z[i]k+1 = Fii z
[i]
k +w[i]

k (6)

wherew[i]
k ∈Wi . SinceWi is bounded andFii is Schur, there

exists a robust positively invariant (RPI) setZi for (6) such

that, for all z[i]k ∈ Zi , then z[i]k+1 ∈ Zi . Given Zi define, if
possible, two sets, neighborhoods of the origin,∆Ei and∆Ui ,
i = 1, . . . ,M such that∆Ei ⊕Zi ⊆ Ei and∆Ui ⊕KiZi ⊆ E U

i ,
respectively.

3.1 The online phase: the i-DPC optimization problems

At any time instantk each subsystemSi solves the following
i-DPC problem.

min
x̂[i]k ,û[i]

[k:k+N−1]

VN
i =

N−1

∑
ν=0

(‖x̂[i]k+ν‖2
Qo

i
+ ‖û[i]

k+ν‖2
Ro

i
)+ ‖x̂[i]k+N‖2

Po
i

(7)
subject to (4),

x[i]k − x̂[i]k ∈ Zi (8)

and, forν = 0, . . . ,N−1

x̂[i]k+ν − x̃[i]k+ν ∈ ∆Ei (9)

û[i]
k+ν − ũ[i]

k+ν ∈ ∆Ui (10)

x̂[i]k+ν ∈ X̂i ⊆ Xi ⊖Zi (11)

û[i]
k+ν ∈ Ûi ⊆ Ui ⊖K iZi (12)

and to the terminal constraint

x̂[i]k+N ∈ X̂
F

i (13)

The choice of the positive definite matricesQo
i , Ro

i , and
Po

i in (7) is discussed in [15,6] to guarantee stability and
convergence, whileX̂ F

i in (13) is a nominal terminal set
which must be chosen to satisfy the following assumption.

Assumption 2 Letting X̂ = ∏M
i=1X̂i , Û = ∏M

i=1Ûi and
X̂ F = ∏M

i=1X̂ F
i , it holds that:

(i) X̂ F ⊆ X̂ is an invariant set for̂xk+1 = (A+BK)x̂k;
(ii) û = Kx̂ ∈ Û for any x̂ ∈ X̂ F ;

(iii) for all x̂k ∈ X̂ F and, for a given constantκ > 0,

VF (x̂k+1)−VF (x̂k)≤−(1+κ)ℓ(x̂k,Kx̂ k) (14)

where VF(x̂) = ∑M
i=1VF

i (x̂[i]) = ∑M
i=1‖x̂[i]‖2

Po
i

and

ℓ(x̂, û) = ∑M
i=1ℓi(x̂[i], û[i]) = ∑M

i=1(‖x̂[i]‖2
Qo

i
+ ‖û[i]‖2

Ro
i
).

At time k, let the pairx̂[i]k|k, û
[i]
[k:k+N−1|k] be the solution to the

i-DPC problem and define bŷu[i]
k|k the input to the nominal

system (4). Then, according to (5), the input to the subsystem
(1) is

u[i]
k = û[i]

k|k+K i(x
[i]
k − x̂[i]k|k) (15)

Denoting byx̂[i]k+ν|k the state trajectory of system (4) stem-

ming from x̂[i]k|k andû[i]
[k:k+N−1|k], at timek it is also possible

to computex̂[i]
[k+N|k] andK i x̂

[i]
k+N|k. In DPC, these values in-

crementally define the trajectories of the reference state and
input variables to be used at the next time instantk+1, that
is

x̃[i]k+N = x̂[i]k+N|k , ũ[i]
k+N = K i x̂

[i]
k+N|k (16)

We underline that, in nominal operating conditions, the only
information to be transmitted consists in the reference tra-
jectories updated as in (16). More specifically, at time step

k, subsystemSi computes̃x[i]k+N andũ[i]
k+N according to (16)

and transmits their values to all the subsystems havingSi as
neighbor, allowing them to update the reference trajectories.

3.2 Offline design and initialization

The design of the DPC algorithm requires that a number
of tuning parameters are properly selected off-line, i.e.,the
gain matricesK i satisfying Assumption 1, the setsEi , E U

i ,
∆Ei, ∆Ui , andZi , and the weighting matricesQo

i , Ro
i , and

Po
i , satisfying Assumption 2. In [15,5,6] we have provided

solutions to the mentioned realization and design issues.

On the other hand, the initial reference trajectories are also
critical tuning parameters, since they strongly affect the
initial feasibility. In fact, the initial reference trajectories
must be defined off-line, based on the system initial con-
ditions. Moreover, when disturbances of unexpected entity
occur during the ordinary system operation, alterating the
system’s condition, new suitable state and output reference
trajectories for all subsystems must be recalculated. Other-
wise, possible serious consequences on the future solution
(e.g., concerning feasibility) of the control problems could
occur. The simplest solution consists (consistently with the
approach suggested in [8]) in generating such trajectories
using a centralized controller. This has the drawback that
a centralized controller must be designed together with the
distributed ones, and that it must be kept activated while the
system is running in order to recover the proper functioning
of the process in case of unpredicted external disturbances.
Obviously, this need of a centralized “hidden” supervisor
greatly reduces the advantages of utilizing a distributed con-
trol scheme.
In [6] two different trajectory generation methods are pre-
sented. They can be applied both for offline reference tra-
jectory generation (i.e., performed at timek = 0) and for
extra-ordinary reset operations, requiring number of itera-
tive information exchanges between neighbors.
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4 Properties of DPC

In this section the main theoretical properties of DPC will
be discussed, together with some extensions. In order to
enhance readability and clarity, the theoretical details will
be omitted. The interested reader can rely on [15,14,3] for
a more rigorous treatment of the discussed topics.

Control of continuous-time systems and discretization.
System (2) can be seen as the state-space representation of
a discrete-time empirical model obtained from data through
identification procedures, for instance by means of impulse
or step response experiments, or it can be computed as the
the linearization and discretization of a continuous-time
first principle model. In the latter case, the discretization
procedure must guarantee to maintain the sparsity of the
original continuous-time model, i.e., the mutual influences
among the subsystems. In fact, the sparse structure of the
model clearly represents physical connections (such as mass
or energy flows) between the subsystems.
Unfortunately, the sparsity pattern of the system is lost
when the exact ZOH (Zero-Order-Hold), Backward Euler,
or bilinear transformations are used, while it is preserved
by the Forward Euler (FE) transformation. However, it is
well known that with FE some important properties of the
underlying continuous time system can be lost; for example
stability is maintained only for very small sampling times,
which can be inadvisable in many digital control applica-
tions.
In distributed and decentralized control techniques basedon
MPC, where discrete-time models are mainly utilized, the
loss of sparsity can easily result in an increase of the con-
troller complexity. For these reasons, in order to improve
the performance of FE and to maintain sparsity, a new dis-
cretization method called Mixed Euler ZOH (mE-ZOH) has
been proposed and analyzed in [12].

Optimality issues and convergence. Global optimality of
the interconnected closed loop system cannot be guaranteed
using DPC. This is due to the inherent conservativeness of
robust algorithms and can be understood in the light of the
game-theoretic interpretation of DPC. Namely, the provided
solution to the control problem can be cast as a maxmin
solution of a dynamic non-cooperative game (see, e.g.,
[26]) where all the involved subsystems aim to optimize
local cost functions which are different from each other:
therefore, different and possibly conflicting goals inevitably
imply suboptimality.
However, differently from suboptimal distributed MPC
algorithms discussed in [24], whose solutions can be re-
garded as Nash solutions of non-cooperative games and
which possibly lead to instability of the closed-loop system,
the convergence of the DPC algorithm can be guaranteed.
Specifically, in [15] a convergence analysis of the DPC
algorithm is carried out, showing that such fundamental
property is guaranteed provided that the tuning parameters
and the required sets can be chosen as specified and that the

feasibility of thei-DPC problems holds at time stepk= 0.

Output feedback. The DPC approach, described for coping
with unknown exogenous additive disturbances, has been
employed in [14] for designing a DPC algorithm for output
feedback control. Specifically, assume that the input and
output equations of the system are the following

xo[i]
k+1 = A ii xo[i]

k +Biiu
[i]
k +∑M

j=1, j 6=i{A i j x
o[ j ]
k +Bi j u

[ j ]
k }

y[i]k = Cix
o[i]
k

(17)
where the state which is not directly available is here denoted
asxo[i]. Denote byxi the estimate ofxo[i], for all i = 1, . . . ,M,
provided by a decentralized Luenberger-like observer of the
type

x[i]k+1 = A ii x
[i]
k +Bii u

[i]
k +∑M

j=1, j 6=i{A i j x
j
k+Bi j u

j
k}

−L i(y
[i]
k −Cix

[i]
k )

(18)

Assume that the decentralized observer is convergent
i.e., A + LC is Schur, whereC =diag(C1, . . . ,CM) and
L =diag(L1, . . . ,LM). Under this assumption it is possible
to guarantee that the estimation error for each subsystem

is bounded, i.e.,xo[i]
k − x[i]k ∈ Σi for all i = 1, . . . ,M. In this

way (18) exactly corresponds with the perturbed system

(1), whered[i]
k =−L i(y

[i]
k −Cix

[i]
k ) is regarded as a bounded

disturbance, i.e.,d[i]
k ∈ Di = −L iCiΣi . From this point on,

the output feedback control problem is solved as a robust
state feedback problem applied to the system (1). Details
on this approach can be found in [14], where a condition
and a constructive method are derived to compute the sets
Σi in such a way thatΣ = ∏M

i=1 Σi is an invariant set for the
interconnected observer error.

Tracking . To extend the DPC method for tracking desired
output signals, the main problem is to characterize the state
and input trajectories, for all subsystems, which correspond
to the desired output trajectories. To clarify this, consider the
case where the desired output trajectories are constant and
equal toȳ[i], for all i = 1, . . . ,M. Under standard assumptions
on the system matrices(A,B,C) (i.e., that the input/output
collective system obtained from (17) has no invariant zeros
in 1, see [3] for details), the desired setpoint values for the
collective statexo and inputu can be computed as follows

[

x̄o

ū

]

=

[

A − I B

C 0

]−1[
0

ȳ

]

(19)

whereȳ = (ȳ[1] . . . ȳ[1]). In this way, the setpoint values̄x[i]

andū[i] for x[i] andu[i], respectively, are obtained as the vec-
tor components of̄xo andū of suitable dimensions.
However, the solution to (19) requires either a centralized
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computation or an iterative procedure (to be carried out
within a sampling interval). These solutions are not com-
patible with the proposed approach. Two different solutions
have been proposed to circumvent this problem: (i) the use
of the so-calledvelocity form, see [3]; (ii) the introduction
of a multi-layer control architecture, see [11,10].

i) The use of the velocity form (as discussed in [3]) im-
plies a transformation of (17) into an equivalent sys-
tem, whose state variable is the pair(δx[i],εεε [i]) and

whose input variable isδu[i], whereδx[i]k = x[i]k − x[i]k−1,

εεε i = y[i]k − ȳ[i], andδu[i]
k = u[i]

k −u[i]
k−1. In this way, the

tracking problem for (17) is cast as a more standard reg-
ulation problem for the velocity form without having to
explicitly computex̄[i] andū[i]. Therefore, the DPC al-
gorithm can be applied without significant restrictions
and has also the advantage of guaranteeing offset-free
tracking in presence of constant perturbations.
The main issue in this solution consists of the analysis
on how constraints onx[i] and onu[i] translate into con-
straints onδx[i], εεε [i], andδu[i], especially as far as the
terminal constraints are concerned.

ii) An alternative solution is discussed in [11,10], where
a hierarchical control architecture is proposed, see Fig-
ure 1: areference output trajectory layercomputes in
a distributed way the output reference trajectoriesỹ[i]

given the “ideal” set-points̄y[i], while areference state
and input trajectory layerdetermines the corresponding
state and control trajectoriesx̃[i] and ũ[i]. At the lower
layer of the structure of Figure 1, a distributedrobust
MPC layer is designed to drive the real state and in-

put trajectoriesx[i]k andu[i]
k of the subsystems as close

as possible tõx[i]k , ũ[i]
k , while satisfying the constraints.

Concerning thereference output trajectory layer, it is
important to remark that, in the considered distributed
context, too rapid changes of the output reference tra-
jectory of a given subsystem could greatly affect the
performance and the behavior of the other subsystems.

Therefore, the rate of variation ofỹ[i]k is limited, which
may limit the reactivity of the proposed control scheme
to rapid changes in the output setpoints.
The main advantages of the scheme proposed in [10]
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Fig. 1. Distributed architecture for tracking reference signals.

are: scalability of the online implementation, limited
transmission and computational load (also in view of
the facts that the reference generator layer is indepen-
dent of the robust MPC layer, and hence computations
can be performed in a parallelized fashion, and that
information is required to be transmitted only among
neighboring subsystems), and simplicity of implemen-
tation.

5 Applications of DPC

The DPC algorithm has been tested in a number of different
test cases, see e.g.,[15,5,6,10]. In this section we first show
some results of application of DPC to three realistic simu-
lation examples (see Sections 5.1-5.3), previously shown in
[6] and related to popular case studies in the context of dis-
tributed control. Also, we apply the multi-layer DPC scheme
for tracking to a real test bed, i.e., the control of a small fleet
of unicycle robots (see Section 5.4), previously illustrated
in [10].

5.1 Temperature control

We aim at regulating the temperaturesTA, TB, TC and TD
of the four rooms of the building represented in Figure 2
(see [11,4]). The first apartment is constituted by roomsA
andB, while the second one by roomsC andD. Each room
is equipped with a radiator supplying heatsqA, qB, qC and
qD. The heat transfer coefficient between roomsA - C and
B - D is kt

1 = 1 W/m2K, the one between roomsA - B
andC - D is kt

2 = 2.5 W/m2K, and the one between each
room and the external environment iskt

e= 0.5 W/m2K. The
nominal external temperature is̄TE = 0 ◦C and, for the sake
of simplicity, solar radiation is not considered. The volume
of each room isV = 48 m3, and the wall surfaces between the
rooms are all equal tosr = 12 m2, while those of the external
walls are equal tose = 24 m2. Air density and heat capacity
are ρ = 1.225 Kg/m3 and c = 1005 J/KgK, respectively.
Letting φ = ρcV, the dynamic model is the following:

φ dTA
dt = srkt

2(TB−TA)+ srkt
1(TC−TA)+ sekt

e(TE −TA)+qA

φ dTB
dt = srkt

2(TA−TB)+ srkt
1(TD −TB)+ sekt

e(TE −TB)+qB

φ dTC
dt = srkt

1(TA−TC)+ srkt
2(TD −TC)+ sekt

e(TE −TC)+qC

φ dTD
dt = srkt

1(TB−TD)+ srkt
2(TC−TD)+ sekt

e(TE −TD)+qD

The considered equilibrium point is:qA = qB = qC = qD =
q̄ = T̄ sekt

e, with TA = TB = TC = TD = T̄ = 20◦C. Let
δTA = TA− T̄, δTB = TB− T̄, δTC = TC− T̄, δTD = TD− T̄,
δTE = TE − T̄E, δqA = (qA− q̄)/cρV, δqB = (qB− q̄)/cρV,
δqC = (qC − q̄)/cρV and δqD = (qD − q̄)/cρV. In
this way, denoting σ1 = srkt

1/cρV, σ2 = srkt
2/cρV,

σ3 = sekt
e/cρV, σ =σ1+σ2+σ3, x=(δTA,δTB,δTC,δTD),

u = (δqA,δqB,δqC,δqD) and d = [σe σe σe σe]
TδTE the

previous model is rewritten in state space representation
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Fig. 2. Schematic representation of a building with two apartments.

ẋ(t) = Acx(t)+Bcu(t)+d(t), where

Ac =















−σ σ2 σ1 0

σ2 −σ 0 σ1

σ1 0 −σ σ2

0 σ1 σ2 −σ















, Bc =















1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1















The discrete-time system of the form (2) (withn= 4 andm=
4) is obtained by mE-ZOH discretization [12] with sampling
time h= 10. The partition of inputs and states is:

x[1] =
[

δTA δTB

]T
, u[1] =

[

δqA δqB

]T

x[2] =
[

δTC δTD

]T
, u[2] =

[

δqC δqD

]T

The constraints on the inputs and the states of the linearized
system have been chosen as:

x[1]min =
[

−5 −5
]T

, x[1]max=
[

5 5
]T

x[2]min =
[

−5 −5
]T

, x[2]max=
[

5 5
]T

u[1]min =
[

−0.038 −0.038
]T

, u[1]max=
[

0.030 0.030
]T

u[2]min =
[

−0.038 −0.038
]T

, u[2]max=
[

0.030 0.030
]T

For implementation details, see [6].In the simula-
tions reported below, the perturbed initial conditions
for δTA = −3.2◦C, δTB = −2.58◦C, δTC = −1.12◦C,
δTD = 3.55◦C have been set, the real external temperature
has been assumed to randomly vary between−10◦C and
10◦C and a sudden decrease of temperatureTA has been
forced att = 350s, representing for instance the opening
of a door, to show the capability of DPC to recover the
reference trajectories.

The results of the simulations, performed using the
continuous-time process model, are shown in Figure 3,
while the values of the input variables are depicted in Fig-
ure 4. In both these figures a comparison between DPC and
a centralized MPC (cMPC), with the same state and con-
trol weighting matrices is provided, showing only a small
reduction of performances.
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Fig. 3. State trajectories with DPC (black lines) and cMPC (gray
lines) ofδTA (left, solid lines),δTB (left, dashed lines),δTC (right,
solid lines),δTD (right, dashed lines).
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Fig. 4. Input trajectories with DPC (black lines) and cMPC (gray
lines) ofδqA (left, solid lines),δqB (left, dashed lines),δqC (right,
solid lines),δqD (right, dashed lines).

To quantitatively assess the performance deterioration of
DPC with respect to cMPC, the following two indices have
been considered

ISRE=
M

∑
i=1

∫ Tend

0

√

x[i](t)Tx(t)[i]dt (20)

J =
M

∑
i=1

Nend

∑
k=0

x[i]Tk Qix
[i]
k +u[i]

′

k Riu
[i]
k (21)

whereTend is the final time andNend is the total number of
discrete-time steps of the simulation experiment. The val-
ues ofISREandJ corresponding to the state transients of
Figure 3 and Figure 4 with DPC and cMPC are reported in
Table 5.1.

5.2 Four-tanks system

A benchmark case often used to assess the effectiveness
of distributed control algorithms is the four-tanks system
schematically drawn in Figure 5, originally described in [16]
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ISRE

cMPC 461.4

DPC 501.1

DPC/cMPC 1.09

J

cMPC 120.2

DPC 127.8

DPC/cMPC 1.06

Table 1
ISREandJ with DPC and cMPC in the temperature control prob-
lem.

Fig. 5. Schematic representation of a four-tanks system.

and then utilized, for instance, in [1,20,3]. The goal is to
regulate the levelsh1, h2, h3 andh4 of the four tanks. The
manipulated inputs are the voltages of the two pumpsv1
andv2. We assume to have a bounded unknown disturbance
w= (w1,w2) on the applied voltages, such that the real input
to the plant is(v1+w1,v2+w2). Let the parametersγ1 and
γ2 ∈ (0,1) represent the fraction of water that flows inside
the lower tanks, and are kept fixed during the simulations.
Then, the dynamics of the system is given by

dh1
dt = − a1

A1

√
2gh1+

a4
A4

√
2gh4+

γ1k1
A1

v1

dh2
dt = − a2

A2

√
2gh2+

(1−γ1)k1
A2

v1

dh3
dt = − a3

A3

√
2gh3+

a2
A2

√
2gh2+

γ2k2
A3

v2

dh4
dt = − a4

A4

√
2gh4+

(1−γ2)k2
A4

v2

(22)

where Ai and ai are the cross-section of Tanki and the
cross section of the outlet hole of Tanki, respectively. The
coefficientsk1 and k2 represent the conversion parameters
from the voltage applied to the pump to the flux of water.
The values of the parameters, taken from [16], are:A1 =
A4 = 28 cm2, A2 = A3 = 32 cm2, a1 = a4 = 0.071 cm2,
a2 = a3 = 0.057 cm2, k1 = 3.35 cm3/Vs, k2 = 3.33 cm3/Vs,
γ1 = 0.7, γ2 = 0.6. The considered equilibrium point is ¯v1 =
v̄2 = 3 V, h̄1 = 12.263 cm,h̄2 = 1.409 cm,h̄3 = 12.783 cm
and h̄4 = 1.634 cm. Denotingδhl = hl − h̄l , l = 1,2,3,4
and δvi = vi − v̄i , i = 1,2, x = (δh1,δh2,δh3,δh4), u =
(δv1,δv2), d = B(w1,w2), linearizing system (22) around

the considered equilibrium point and discretizing it using
mE-ZOH [12] with sampling timeh= 1 s, we obtain a linear
system of the type (2), where

A =















0.98 0 0 0.04

0 0.97 0 0

0 0.03 0.99 0

0 0 0 0.96















, B =















0.08 0

0.03 0

0 0.06

0 0.05















The inputs and states are partitioned as:

x[1] =
[

δh1 δh2

]T
, u[1] = δv1

x[2] =
[

δh3 δh4

]T
, u[2] = δv2

The constraints on the inputs and the states of the linearized
system have been chosen as:

x[1]min =
[

−12.263 −1.409
]T

, x[1]max=
[

40 40
]T

+ x[1]min

x[2]min =
[

−12.783 −1.634
]T

, x[2]max=
[

40 40
]T

+ x[2]min

u[1]min = u[2]min−3, u[1]max= u[2]max= 3

The disturbancesw1,2 on the applied voltages are assumed
to randomly vary between−0.01 V and 0.01 V. For imple-
mentation details see [6].Starting from initial conditions
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Fig. 6. Trajectories of the statesx[1] (left) andx[2] (right) obtained
with DPC (black lines) and with cMPC (gray lines) for the four–
tanks system. Solid lines:δh1 andδh3; dashed lines:δh2 andδh4.

δh1 = 0.274 cm,δh2 = 0.067 cm,δh3 = 0.203 cm, and
δh4 = 0.254 cm. The simulation results, obtained using the
continuous-time nonlinear model, are reported in Figure 6,
while in Figure 7 the applied real voltages are shown. In ad-
dition to the external disturbance(w1,w2), included in the
robust controller design, at timet = 100 s an unpredicted
impulse equal to 2 V has been applied to the first pump. The
reference trajectories were then re-generated online to re-
cover the nominal operating conditions. The performances
are close to the ones obtained with centralized MPC, as also
witnessed by the values taken by the indicesISRE and J
defined in (20), (21) and reported in Table 5.2.
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Fig. 7. Inputsδv1 (left) andδv2 (right) obtained with DPC (black
lines) and with cMPC (gray lines) for the four-tanks system.

ISRE

cMPC 74.2

DPC 82.3

DPC/cMPC 1.11

J

cMPC 1.36

DPC 1.47

DPC/cMPC 1.08

Table 2
ISREandJ with DPC and cMPC in the in the four-tanks system
problem.

5.3 Cascade coupled flotation tanks

The third example deals with the level control problem of
flotation tanks proposed in [28]. The system is constituted by
five tanks connected in cascade with control valves between
the tanks (Figure 8). A flow of pulpq enters the first tank.
The goal is to keep stable the levelsyi , i = 1, . . . ,5, in all
the tanks. The manipulated inputs are the commands to the
valvesvi , i = 1, . . . ,5. The mathematical model describing

Fig. 8. Schematic representation of the flotation tanks.

the dynamics of the levels inside the five tanks is [28]:

πr2 dy1
dt = q− k1v1

√
y1− y2+h1

πr2 dy2
dt = k1v1

√
y1− y2+h1− k2v2

√
y2− y3+h2

πr2 dy3
dt = k2v2

√
y2− y3+h2− k3v3

√
y3− y4+h3

πr2 dy4
dt = k3v3

√
y3− y4+h3− k4v4

√
y4− y5+h4

πr2 dy5
dt = k4v4

√
y4− y5+h4− k5v5

√
y5+h5

(23)

wherer is radius of the tanks,ki , i = 1, . . . ,5 are the valves
coefficients andhi , i = 1, . . . ,5 are the physical height dif-
ferences between subsequent tanks. We setr = 1 m, ki = 0.1
m2.5/Vs, i = 1, . . . ,5 andhi = 0.5 m, i = 1, . . . ,5. The nomi-
nal value for the inlet flow is ¯q= 0.1 m3/s and we assume it
is affected by an uncertaintyw=±0.5% randomly varying
with the time. We considered the equilibrium point where
ȳi = 2 m, i = 1, . . . ,5, and, correspondingly, ¯vi = 1.4142 V,
i = 1, . . . ,4 andv̄5 = 0.6325 V. Letδyi = yi − ȳi , i = 1, . . . ,5,
δvi = vi − v̄i , i = 1, . . . ,5, x = (δy1,δy2,δy3,δy4,δy5), u =
(δv1,δv2,δv3,δv4,δv5) andd = Bdw. The linearization of
system (23) in correspondence of the considered equilibrium
point and its discretization with mE-ZOH using a sampling
time 5 s, leads to a linear system of the form (2) , where
Bd = [1.4714 0 0 0 0]T and

A =



















0.853 0.147 0 0 0

0.136 0.727 0.136 0 0

0 0.136 0.727 0.136 0

0 0 0.136 0.727 0.136

0 0 0 0.157 0.969



















,

B =



















−0.104 0 0 0 0

0.096 −0.096 0 0 0

0 0.096 −0.096 0 0

0 0 0.096 −0.096 0

0 0 0 0.111 −0.248



















The partitions of inputs and states, fori = 1, . . . ,5 is:

x[i] = δyi , u[1] = δv1

The constraints on the inputs and the states of the linearized
system, fori = 1, . . . ,5, have been set as:

x[i]min =−1, x[i]max= 1, u[i]min =−v̄i, u[i]max= 3− v̄i

For implementation details, please see [6].
The initial levels of the tanks have been assumed to be

different from the required values, that isδy1 =−23.3 cm,
δy2 =−21.6 cm,δy3 = 23.3 cm,δy4 = 44.4 cm, andδy5 =
−12.9 cm and at timet = 300s a disturbance of magnitude
w= 0.1 m3/s has been applied to the plant. In Figure 9 we
show the transients, obtained using the continuous-time non-
linear model, of the state and input of the first tank, directly
affected by the external flowq. Figure 10 and Figure 11 re-
port, respectively, the states and the inputs of the remaining
four tanks. Note that, also in this case, the distributed control
system reacts to the disturbance by generating from scratch
the reference trajectories. Moreover, only minor differences
arise between the centralized and the distributed solutions,
as again shown by the indices (20), (21) reported in Table
5.3.
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Fig. 9. Trajectories of the statex[1] (left) and of the inputu[1] (right)
obtained with DPC (black lines) and with cMPC (gray lines) for
the control of the floating tanks.
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Fig. 10. Trajectories of the statesx[2] (a), x[3] (b), x[4] (c) andx[5]

(d) obtained with DPC (black lines) and with cMPC (gray lines)
for the control of the floating tanks.
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Fig. 11. Inputsu[2] (a), u[3] (b), u[4] (c) andu[5] (d) obtained with
DPC (black lines) and with cMPC (gray lines) for the control of
the floating tanks.

5.4 Control of unicycle robots

In this section the proposed algorithm is applied to the prob-
lem of positioning a number of mobile robots in specified
positions, while guaranteeing collision avoidance.
The dynamics of a single robot is described by a modified
version of the first-order kinematic model [23]:

ẋ= vcosφ (24a)
ẏ= vsinφ (24b)

φ̇ = ω (24c)
v̇= a (24d)

ISRE

cMPC 10.7

DPC 12.2

DPC/cMPC 1.14

J

cMPC 6.6

DPC 6.7

DPC/cMPC 1.01

Table 3
ISRE and J with DPC and cMPC in the flotation tanks control
problem.

where (x,y) is the cartesian position of the robot,φ is
its orientation angle, andv is its linear velocity. The linear
accelerationa and the angular velocityω are inputs.
By resorting to a feedback linearization procedure (see [23])
a linear model of the robots can be used to describe the
system’s dynamics. Namely, defineη1 = x, η2 = ẋ, η3 = y,
η4 = ẏ, and the dynamics resulting from (24) is

η̇1 = η2 (25a)
η̇2 = acosφ − vω sinφ (25b)
η̇3 = η4 (25c)
η̇4 = asinφ + vω cosφ (25d)

Now define two new “fictitious” input variablesax =
acosφ −vω sinφ anday = asinφ +vω cosφ . From (25) the
model (24) is transformed in a set of two decoupled double
integrators with inputsax anday.
To recover the real inputs(ω ,a) from (ax,ay) compute

[

ω
a

]

=
1
v

[

−sinφ cosφ
vcosφ vsinφ

][

ax

ay

]

(26)

Note that, for obtaining (26), it is assumed thatv 6= 0. This
singularity point must be accounted for when designing con-
trol laws on the equivalent linear model [23].
In discrete-time, from (25) and with sampling timeτ = 5 s,
we obtain

Aii = A=















1 τ 0 0

0 1 0 0

0 0 1 τ
0 0 0 1















, Bii = B=















τ2

2 0

τ 0

0 τ2

2

0 τ















The measured variables arex andy, i.e.,η1 andη3 in (25).
Note that this case study is characterized by (i) no dy-
namically coupling terms, i.e.,Ai j = 0 andBi j = 0 for all
i, j = 1, . . . ,M with j 6= i; (ii) static coupling constraints on
the position variables guaranteeing collision avoidance.

The experimental set-up consists of three e-puck mobile
robots [21]. To simplify the application of the algorithm, the
control law is designed on a portable computer communi-
cating with the e-puck robots through wireless connection.
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The measurement system consists of a camera, installed on
the top of the 130×80 cm2 working area. Position and ori-
entation of each robot are detected using two colored circles,
placed on the top of each agent, see Figure 12.

Fig. 12. Sketch of the experimental set-up.

Collision avoidance constraints are in principle non-convex
and described using nonlinear inequalities. To circumvent
this problem, suitable linear constraints are defined to re-
place non-convex ones and are obtained by tracing a line
stemming from the center of each robot and corresponding
to a tangent line to the circumference of the neighboring
ones.

In the reported real experiment the three robots are initially
placed (at timet = 1) at positions(28,52), (39,16), and
(90,39) - all coordinates are in cm. Figure 13 shows the
evolution of their motion in reaching the goal positions -
i.e., (86,13), (77,55), and(20,39) - at timet = 45 s while
fulfilling collision avoidance constraints.

Fig. 13. Plots of the robot trajectories. Robot 1:�; robot 2:©;
robot 3:△. Symbols with white surface denote the position of the
robots, while symbols with black surface denote the goal positions.
Large circles with grey dashed line denote the area occupiedby
the robots.

6 Conclusions

In this paper we have presented the main ideas behind the
Distributed Predictive Control (DPC) algorithm first pro-
posed in [15]. In the paper we have also illustrated the main
properties, extensions, and applications of DPC, subject of
subsequent works.
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